Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7894, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570544

ABSTRACT

The relationship between phase diagram features around the solid-liquid equilibrium region and ionic conductivity in aqueous solutions is not well understood over the whole concentration range as is the case for acidic aqueous solutions. In this work, we have studied the ionic conductivity (κ) as a function of molar fraction (x) and temperature (T) for four acid/water solutions namely, monoprotic hydrochloric acid (HCl) and nitric acid (HNO3), diprotic sulfuric acid (H2SO4) and triprotic phosphoric acid (H3PO4) along with their binary phase diagrams. The connection between the main features of the phase diagrams and the trends in the ionic conductivity isotherms is established with a new insight on the two pertinent dominant conductivity mechanisms (hopping and vehicular). Ionic conductivity at different temperatures were collected from literature and fitted to reported isothermal (κ vs. x) and iso-compositional (κ vs. T) equations along with a novel semi-empirical equation (κ = f (x, T)) for diprotic and triprotic acids. This equation not only has the best fit for acids with different valency; but also contains four parameters, less than any other similar equation in literature. This work is one of few that advances the understanding of the intricate relationship between structure and ionic transport in various acidic aqueous solutions.

2.
Commun Chem ; 6(1): 195, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700030

ABSTRACT

The relationship between structure and ion transport in liquid electrolyte solutions is not well understood over the whole concentration and temperature ranges. In this work, we have studied the ionic conductivity (κ) as a function of molar fraction (x) and Temperature (T) for aqueous solutions of salts with nitrate anion and different cations (proton, lithium, calcium, and ammonium) along with their liquid-solid phase diagrams. The connection between the known features in the phase diagrams and the ionic conductivity isotherms is established with an insight on the conductivity mechanism. Also, known isothermal (κ vs.. x) and iso-compositional (κ vs.. T) equations along with a proposed two variables semi-empirical model (κ = f (x, T)) were fitted to the collected data to validate their accuracy. The role of activation energy and free volume in controlling ionic conductivity is discussed. This work brings us closer to the development of a phenomenological model to describe the structure and transport in liquid electrolyte solutions.

3.
Front Chem ; 10: 966274, 2022.
Article in English | MEDLINE | ID: mdl-36034671

ABSTRACT

Perovskite La2/3xLi3xTiO3 (LLTO) materials are promising solid-state electrolytes for lithium metal batteries (LMBs) due to their intrinsic fire-resistance, high bulk ionic conductivity, and wide electrochemical window. However, their commercialization is hampered by high interfacial resistance, dendrite formation, and instability against Li metal. To address these challenges, we first prepared highly dense LLTO pellets with enhanced microstructure and high bulk ionic conductivity of 2.1 × 10 - 4 S cm-1 at room temperature. Then, the LLTO pellets were coated with three polymer-based interfacial layers, including pure (polyethylene oxide) (PEO), dry polymer electrolyte of PEO-LITFSI (lithium bis (trifluoromethanesulfonyl) imide) (PL), and gel PEO-LiTFSI-SN (succinonitrile) (PLS). It is found that each layer has impacted the interface differently; the soft PLS gel layer significantly reduced the total resistance of LLTO to a low value of 84.88 Ω cm-2. Interestingly, PLS layer has shown excellent ionic conductivity but performs inferior in symmetric Li cells. On the other hand, the PL layer significantly reduces lithium nucleation overpotential and shows a stable voltage profile after 20 cycles without any sign of Li dendrite formation. This work demonstrates that LLTO electrolytes with denser microstructure could reduce the interfacial resistance and when combined with polymeric interfaces show improved chemical stability against Li metal.

4.
Environ Sci Pollut Res Int ; 28(11): 13124-13132, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33174172

ABSTRACT

Separation of oil-water (OW) emulsions is investigated using a photocatalytic demulsification approach. Experiments were conducted using two types of photocatalysts, namely, ZnO and TiO2. The emulsion samples were prepared with oil to water ratios of 1:3, 1:1, and 3:1 and using nonionic surfactant Tween 20 as an emulsifier. The demulsification efficiency was determined using a direct time varying phase separation measurement, while dynamic light scattering (DLS) and microscope imaging (MI) were used to determine the change in emulsion droplets size. The investigation results showed that all the emulsions were destabilized and separated within 30-90 min with demulsification efficiency that ranged from 38 to 90%. On the other hand, untreated control samples remained stable with no phase separation for more than 24 h. For most of the studied experimental conditions, TiO2 nanoparticles gave better demulsification results than ZnO. Modeling of the batch demulsification kinetics for both systems agreed satisfactorily with the experimental measurements. This could allow its further extension towards design of continuous processes for potential implementation in treatment of industrial oily wastewaters.


Subject(s)
Emulsifying Agents , Nanoparticles , Emulsions , Wastewater , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...